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Crane’s accidents

Cranes
are widely used to transport heavy loads in shipyards, factories and construction sites.

Hazards associated with operating or working near cranes leading to injuries and
deaths of workers (1 in 10 construction workers are injured annually).

Many accidents happened due to
improper operation of the crane, not
following manufacturer instructions,
poor control of load dynamic
behaviour.

Also, wind related accidents are due to
the operator not following proper
shut-down procedures.
When the oscillations of the payload
passed the critical limit :

1 The operator must damp the
oscillations.

2 or halt the operation till natural
damping occurs.

Both options are time consuming and
reduce efficiency of the process.

FIGURE 1 – Tower Crane Accidents’ Statistics
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Many accidents happened due to
improper operation of the crane, not
following manufacturer instructions,
poor control of load dynamic
behaviour.

Also, wind related accidents are due to
the operator not following proper
shut-down procedures.
When the oscillations of the payload
passed the critical limit :

1 The operator must damp the
oscillations.

2 or halt the operation till natural
damping occurs.

Both options are time consuming and
reduce efficiency of the process.

The proposed solution :
Automated Tower Cranes

Lobna Tarek, Ayman El-Badawy, Horst Schulte Modeling and Control of Tower Crane Motions 2 / 26



Introduction Modeling Control Techniques Motion planning External Disturbances Sensors

Automated Tower Cranes

Objective :

1 Precise trajectory tracking.

2 Reduced transfer time.

3 Elimination of the payload oscillations.

4 Regardless to the working conditions
(wind).

FIGURE 1 – Tower Crane in Construction Site [1]

Safety issues on construction sites are
no longer a concern.

Raising the efficiency and productivity
of the construction process.
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Intelligent Process Automation

Labor-intensive repetitive tasks are replicated following predetermined
path while handle structured data and standardized processes.
High level of human intervention and operating.

Semi-structured data processing through predefined algorithms to handle
dynamic processes. Human takes over when necessary.

Level 5 Autonomous Intelligent
Adaptive, self learning and intuitive systems with
decision making capabilities process without human intervention
while handling all tasks including fail safe and weather conditions

Humans are in full control but alerted with conditions, environment
and obstruction. No control actions taken by the system.

The automated system controls all operational and tactical decisions
under human supervision by identifying pattern of unstructured data,
image recognition, learning and making predictions.
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Tower Crane System

The Tower Crane is modeled as a five degree of freedom robotic arm : Trolley, Jib,
Alpha, Beta and Cable.

A highly nonlinear underactuated MIMO system. Hence, controlling such a system
is hard compared to a fully actuated system since it has only two inputs for
obtaining four outputs.

FIGURE 2 – Lab sized tower crane FIGURE 3 – Schematic Representations of Tower Cranes
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Dynamics

The nonlinear model equations was based on Lagrangian method :

M(q)︸ ︷︷ ︸
inertia
matrix

q̈ + b(q, q̇)︸ ︷︷ ︸
Centrifugal and

damping elements

+ g(q)︸︷︷︸
Gravitational

forces

= F︸︷︷︸
Motor’s
inputs

The coupling between the Degrees of free-
dom is considered.
Including the coupling between the rotation
of the jib and the payload oscillations, that
occurs due to :

Coriolis acceleration

~ap = ~ao +
bd2

dt2
~r + 2~ωib ×

bd
dt
~r

+ ~αib ×~r + ~ωib × (~ωib ×~r)

Centripetal acceleration
FIGURE 4 – Double Pendulum System [2]
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Proposed Controllers

Robust Control Adaptive Control Optimal Control

Unmodeled
Dynamics

Parametric
uncertainties

Nonlinear Constraints

Sliding Mode
Control

Adaptive Sliding
Mode Control
with varying gain

Model Predictive
Control

Reduce the control
effort demand

Control Design
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Phases of Sliding Mode Technique

1st phase : reaching phase where states are moving from initial position to the
sliding surface in finite time.
2nd phase : sliding phase : the states slide on the surface till it reach its desired
operating point and stays there using Lyapunov theory.

FIGURE 5 – Sliding Model Control [3]
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Sliding Mode Control Procedure

Sliding Variable

Transform the system from nth order to 1st order :

s = (
d
dt

+ λ)n−1x̃ = ˙̃x + λx̃

e1 and e2 are actuated and unactuated states tracking errors.

Given that s = 0 : ˙̃x = −λx̃ ≡ x̃(t) = x̃(0)e−λt

when λ is a positive value, the states tend to zero exponentially.

Derivative of the sliding surface

ṡ = f + u + λẋ

Discontinuous controller will be designed as follows :

u = −f̂ − λẋ︸ ︷︷ ︸
feedback controller

nominal part

f is real system dynamics and f̂ is the estimated system dynamics based on the
nonlinear dynamical model.
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when λ is a positive value, the states tend to zero exponentially.

Derivative of the sliding surface

ṡ = f + u + λẋ = f − f̂ − Ksgn(s)

Discontinuous controller will be designed as follows :

u = −f̂ − λẋ︸ ︷︷ ︸
feedback controller
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−Ksgn(s)︸ ︷︷ ︸
corrective

term

f is real system dynamics and f̂ is the estimated system dynamics based on the
nonlinear dynamical model.
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Stability Analysis

Lyapunov positive definite function

V =
1
2

s2

u is substituted in derivative of Lyapunov function to get :

V̇ = sṡ = s(f − f̂ − Ksgn(s))

using s.sgn(s) = |s|.
V̇ = s(f − f̂ )− K |s|

The model uncertainties with its constant upper bound given by :

|f − f̂ | ≤ F = constant

V̇ ≤ |f − f̂ ||s| − K |s|

V̇ ≤ (F − K )|s| where, K = F + η

V̇ ≤ −η|s| < 0

Therefore, s → 0 as t →∞ which is Globally Asymptotically stable when η > 0.
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Adaptive Sliding Mode Control

An adaptation law is added to calculate the varying parameters, to be used by the
controller.

FIGURE 6 – ASMC Procedure
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Nonlinear Model Predictive Control (NMPC)

Also named receding horizon control, relies on :

Solving an Optimal Control Problem (OCP) at each sampling instant.

Applying the first part of the optimal control input to the system.

The optimization horizon is shifted forward and the OCP is solved again with the
actual (measured) system states as initial conditions [4]

FIGURE 7 – MPC Procedure [5]

FIGURE 8 – chess [6]
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Optimal Control Problem Formulation

Model
x(k + 1) = fk (x(k), u(k))

x(k) is the state vector, and u(k) is the control input.
Constraints (h(x(k), u(k)) ≤ 0) :

Physical constraints (i.e. limitations) on the states and/or inputs.
Performance constraint.
Safety constraint

Performance Objective

The performance of a system is evaluated quantitatively, the designer selects a
performance objective.
An optimal control is defined to minimize the performance objective.

J∗0←N = min xT
N P xN︸ ︷︷ ︸

Terminal Cost

+

N−1∑
k=0

xT
k Q xk + uT

k R uk︸ ︷︷ ︸
Stage Cost

where N is the time horizon, the weighting matrices are P, Q and R .
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Construction Site Simulation

FIGURE 9 – PathPalnning [7] FIGURE 10 – Smoother Path [7]

The high dynamic characteristics of construction site conditions often require
re-planning in real time the crane’s path to ensure safety and efficiency.

Any unpredicted objects or other conflicts related to the operations of the cranes
on site should be detected and tracked in real time.
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Technique For Motion Planning

The crane model is transferred between work space (real world space) into the
reduced high-dimensional space as the configuration space (C-space).

FIGURE 11 – Wspace [8]

FIGURE 12 – Cspace [9]

C-obstacle : is an area in which the crane is not allowed to move, due to the collision
with obstacles or the crane itself (self-collision).

The first part focused only on finding a collision free path efficiently.

The second part focuses on refining and optimizing the path for better crane
operations.
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Fuzzy Logic Controllers

An intelligent control system, learning from experience that mainly apply knowledge to
manipulate the environment.

PID Control : IF temperature > 25 THEN turn A/C ON (24.9 won’t be accepted).
Fuzzy Control : IF temperature is HOT THEN turn A/C ON (depends on
circumstances)

FIGURE 13 – Fuzzy Logic Toolkit From National Instruments

Takagi Sugeno-Fuzzy Observer

The external disturbances such as wind are estimated.
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Estimators

The states are measured using encoders.
The unmeasured states such as velocities will be estimated using
extended Kalman filter.

Prediction

Predict the state
from the model

Predict the error
covariance

Correction

Compute the
Kalman Gain

Estimate the state
from the measurement

Update the error
covariance
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Summary

Tower cranes are widely-used and its operation is modified by
applying control theory.

It is crucial to properly suppress the oscillations of the payload to
avoid dangerous situations.

Also, the rejection of external forces induced by wind.

The efficiency of the controllers are validated experimentally on a
laboratory tower crane.

ASMC is used to handle system’s uncertainties.

The MPC controller is used taking into account the system
constraints while minimizing the energy consumption.

A collision free path is to be calculated in real time for the load to
follow.
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